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Abstract: The occurrence of landslides has been increasing in recent years due to intense and pro‑
longed rainfall events. Lowering the groundwater in natural and man‑made slopes can help to
mitigate the hazards. Subsurface drainage systems equipped with pumps have traditionally been
regarded as a temporary remedy for lowering the groundwater in geosystems, whereas long‑term
usage of pumping‑based techniques is uncommon due to the associated high operational costs in la‑
bor and energy. This study investigates the intelligent control of groundwater in slopes enabled by
deep reinforcement learning (DRL), a subfield of machine learning for automated decision‑making.
The purpose is to develop an autonomous geosystem that can minimize the operating cost and en‑
hance the system’s safetywithout introducing human errors and interventions. To prove the concept,
a seepage analysis model was implemented using a partial differential equation solver, FEniCS, to
simulate the geosystem (i.e., a slope equippedwith a pump and subjected to rainfall events). A Deep
Q‑Network (i.e., a DRL learning agent) was trained to learn the optimal control policy for regulat‑
ing the pump’s flow rate. The objective is to enable intermittent control of the pump’s flow rate
(i.e., 0%, 25%, 50%, 75%, and 100% of the pumping capacity) to keep the groundwater close to the
target level during rainfall events and consequently help to prevent slope failure. A comparison
of the results with traditional proportional‑integral‑derivative‑controlled and uncontrolled water ta‑
bles showed that the geosystem integrated with DRL can dynamically adapt its response to diverse
weather events by adjusting the pump’s flow rate and improve the adopted control policy by gain‑
ing more experience over time. In addition, it was observed that the DRL control helped to mitigate
slope failure during rainfall events.

Keywords: deep reinforcement learning; Deep Q‑Network; landslide; intelligent control; seepage
analysis; slope stability analysis

1. Introduction
Slope failureswith themovement ofmassive soil, mud, or rock volumes displace thou‑

sands of people annually [1]. Although the global fatality rate from landslides is not well
quantified, 2620 reported landslides between 2004 and 2010 caused 32,322 casualtiesworld‑
wide [2]. Economic loss in such disasters is also considerable, as the annual cost of dam‑
ages to infrastructure is estimated to be over USD 250 billion globally [3]. Extreme rainfall
events are one of themain triggers for landslides [4]. InCentral America and theCaribbean,
for example, heavy rainfall was the cause of approximately 90% of the landslides recorded
in the Enhanced Durham Fatal Landslides Database (EDFLD) [5]. Prolonged intense rain‑
fall events reduce the stability of the slope by increasing the groundwater table and the
degree of saturation above the groundwater table and consequently decreasing the unsat‑
urated soil shear strength [6–9]. The frequency of heavy rainfall events has escalated in
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recent years as a result of climate change, which has increased the likelihood of landslide
occurrence in general [10–12].

In order to control groundwater tables in real time and reduce the risk of landslides,
subsurface drainage systems have beenwidely used in flood‑prone locations [13–15]. Most
drainage systems are designed to use the force of gravity for collectingwater [15]. In the ab‑
sence of gravity, subsurface drainage wells equipped with pumping systems are required
to lower the groundwater [16,17]. However, inefficient manual operations of the pumping
systems can significantly increase the labor and energy costs. In most cases, these high op‑
erational costs may only allow short‑term usage of pumping systems [18]. This study aims
to minimize the operational cost of such systems by boosting the autonomy of geosystems
utilizing deep reinforcement learning (DRL).

DRL is a combination of deep learning and reinforcement learning (RL). Deep learn‑
ing algorithms have been widely adopted in the field of geotechnical engineering for land‑
slide detection [19,20], landslide susceptibility analysis [21,22], soil and rock classifica‑
tion [23,24], tunnel construction [25,26], and groundwater level prediction [27–30]. How‑
ever, RL,which is a subfield ofmachine learning for automated sequential decision‑making,
has only been utilized in a few research studies in geotechnical engineering for tunneling
applications [31–33]. Integration of the recent advances in deep neural networks with RL
enabled DRL for revolutionary sequential decision‑making in autonomous systems with
high‑dimensional state spaces [34–36]. Different studies showed the remarkable perfor‑
mance of DRL in games [34,36–39] and real‑world applications such as robotics [40], au‑
tonomous driving [41], the control of stormwater systems [42], and carbon storage reser‑
voir management [43]. Therefore, this study investigates the concept of using DRL for the
intelligent control of groundwater. This concept can help to generate an intelligent geosys‑
tem that can adjust the pump’s flow rate and control the groundwater table in response
to dynamic rainfall intensity. To the best of our knowledge, we are the first to implement
DRL for controlling the groundwater in slopes.

This paper is an extended version of our preliminary study on developing a DRL
framework for the intelligent control of groundwater in a typical geosystem (i.e., a slope
equipped with a pump and subjected to rainfall events) [44]. The main contributions of
this paper are (1) modifying the DRL framework proposed in our previous study [44],
such as the reward function and training hyperparameters; (2) evaluating the DRL control
of the water level against the traditional proportional‑integral‑derivative (PID)‑controlled
and uncontrolled water levels; (3) assessing the performance of DRL control in preventing
slope failures; (4) investigating the effectiveness of transferring theDRL agent’s knowledge
from a pre‑trainedmodel to a new training taskwith a different rainfall event; (5) exploring
the influence of the number of observations from the environment, and (6) investigating
the impact of binary control versus intermittent control on the groundwater management.

The remainder of the paper is structured as follows. Section 2 first reviews the funda‑
mentals of RL in the geosystem and then introduces the environment, agent, and reward
function. Section 3 explains how the performance of the DRL for groundwater control was
evaluated for various rainfall events. Section 4 provides settings and results for training
the deep neural network in the DRL. Sections 5 and 6 present more in‑depth discussions
and conclusions, respectively.

2. Deep Reinforcement Learning for Geosystems
2.1. Basics of Reinforcement Learning for Geosystems

In the control enabled by RL, the (learning) agent interacts with an unknown environ‑
ment to explore the optimum control policy that maximizes the cumulative reward [45,46].
The agent takes an action depending on the state of the environment, and the environment
responds by returning the next state and a reward to evaluate the agent’s performance.
The agent learns from the “trial and error” process, starting with random actions, and
then, over time, it learns which action can return long‑term rewards [47]. The Markov De‑
cision Process (MDP) allows us to represent the above agent–environment interaction in
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a mathematical framework [43]. Figure 1 shows the agent–environment interaction and
the geometry of the lab‑scale geosystem.
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Figure 1. Agent–environment interaction in the geosystem; the virtual learning environment consists
of a lab‑scale slope equipped with a pump and subjected to precipitation (unit: m).

The basic elements for RL in the geosystem are as follows.
• Environment: In this study, the RL environment is the lab‑scale geosystem simulated

with a numerical model for seepage. The seepage model informs the agent on the
geosystem’s condition and specifies what state it can be in after performing an ac‑
tion. In future real‑world applications, this environment can be the geosystem and its
surrounding environment in the field. Simulation of the geosystem using a seepage
model is thoroughly discussed in Section 2.2.

• Agent: The RL agent works as a pump operator in the RL framework. More specif‑
ically, it embodies the neural network algorithm that controls the water table by ob‑
serving the current state of the geosystem and taking actions to regulate the pump’s
flow rate. In this study, a Deep Q‑Network (DQN) was adopted as the learning agent,
which is covered in depth in Section 2.3.

• State (St): The state describes the current condition of the environment (i.e., the geosys‑
tem). In this study, the RL agent receives three observations from the environment be‑
fore taking an action. The observations are (1) the water head at point “P” in Figure 1
representing the distance from the target level, (2) the rain intensity at the current time
step, and (3) the rain intensity at the next time step. A transient seepage analysis was
performed at each time step to determine the water head at point “P”.

• Action (At): An action is an operation taken by the agent in the current state. For
this geosystem, an action was considered to control the pump’s flow rate for each
time step. The action space contains all the possible actions that the agent can take.
To enable intermittent control of the geosystem, five discrete actions were defined,
At = [0, 1, 2, 3, 4], representing 0%, 25%, 50%, 75%, and 100% of the pumping capac‑
ity, respectively.

• Reward (Rt): The reward is the evaluation score or feedback assigned to the agent for
its action. At any given time t, the agent observes the state of the geosystem, and then,
based on this, takes an action to regulate the pump’s flow rate for controlling thewater
level. Subsequently, the agent receives a reward to assess the action choice. The re‑
ward function is defined to designate the desired and undesired actions in the current
state. The agent will receive a positive reward if the action can keep the groundwater
close to the target level. If the groundwater moves away (up or down) from the target
level, the agent will receive a negative reward related to the distance of the water table
from the target level.
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2.2. Environment Simulation: Seepage Model
A seepage model was employed to simulate the geosystem (i.e., a slope equipped

with a pump and subjected to rainfall events). To update the agent in the state St, a tran‑
sient seepage analysis was conducted with the model to determine the water head at point
“P” for the given rain intensity at time t. The seepage analysis was carried out using
DOLFIN [48], the Python interface of FEniCS [49]. FEniCS is an open‑source library for
solving partial differential equations (PDEs). In our previous study [50], a similar seepage
model was seamlessly coupled with a slope stability analysis to investigate the influence
of the water level fluctuation in the reservoir on the stability of silty and sandy slopes.
The computational framework of the seepage model was validated using another finite
element PDE solver, FlexPDE [50]. The present seepage model, however, differs in the
boundary conditions, soil properties, and slope geometry. The governing equation for the
saturated–unsaturated transient seepage analysis in this study is given in Equation (1).

S
∂(h + z)

∂t
= K ×∇(∇(h + z)) + qs, (1)

where h [m] is the pressure head, z [m] is the elevation head, and qs [m/s] is the sink term
representing the pump’s outflux.

The definitions of the terms S and K depend on the soil’s degree of saturation. In
a saturated flow, S and K were replaced with Ss (specific storage of saturated flow) and
Ks (saturated hydraulic conductivity), respectively. Ss and Ks were determined based on
the type of soil and were assumed to be constant during the transient seepage analysis.
In an unsaturated flow, S and K were substituted by Sc (specific moisture content) and
KsKr, where Kr is the relative hydraulic conductivity. The specific moisture content for the
unsaturated flow is the derivative of volumetric water content (θ) with respect to the water
head (h),

Sc =

∣∣∣∣ ∂θ

∂h

∣∣∣∣ = n
∂Se

∂h
, (2)

where n [−] is the soil porosity and Se is the effective saturation degree. Se was derived
from the van Genuchten equation [8,51],

Se =

[
1 +

(
ψ

P0

) 1
1−a

]−a

, (3)

where a and P0 [Pa] are fitting parameters that can be obtained from the soil–water charac‑
teristic curve (SWCC). ψ [Pa] is the matric suction and is calculated as follows:

ψ = γw|h|, (4)

where γw [N/m3] is the unit weight of water.
The relative hydraulic conductivity quantifies how the hydraulic conductivity changes

with the degree of saturation. The widely adopted van Genuchten equation was used for
Kr [51]:

Kr = S0.5
e

(
1 −

(
1 − S1/a

e

)a)2
, (5)

Table 1 presents the input parameters adopted for the seepage model. These parame‑
ters were obtained based on a combination of lab tests and published ranges of values for
similar soils from the literature.

The geometry of the geosystem used in the analyses is shown in Figure 1. In fact, the
physical counterpart of this lab‑scale geosystem will serve as a real‑world environment in
future studies for testing the proposedmethodology in this study. The lab‑scale geosystem
was located in an acrylic tank to control the influx and outflux in the system. Accordingly,
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the no‑flux boundary condition was assigned to the bottom (“AF”), left (“AB”), and right
(“FE”) sides of the slope.

−∇(h + z) ·→n = 0 on Γ(AF, AB, FE) for t > 0, (6)

Table 1. Input parameters for the seepage model.

Definition Soil

Saturated hydraulic conductivity, KS [m/s] 6 × 10–4
Saturated specific storage, SS [1/m] 1 × 10–4
Porosity, n [–] 0.32
Empirical parameter, P0 [Pa] 1200
Empirical parameter, a [–] 0.6

The only influx into the geosystem is the rain infiltrating across the slope’s top surfaces
(“BC”, “CD”, and “DE”):

−∇(h + z) ·→n = Ir on Γ(BC, CD, DE) for t > 0, (7)

where Ir [m/s] is the rain intensity [m/s]. Four different rainfall events, as shown in Figure 2,
were considered to train the agent. The rainfall events were designed based on three pa‑
rameters: (1) rainfall duration, (2) total rainfall depth, and (3) rain intensity distribution
pattern. For rain intensity distribution patterns, German guidelines, Deutschen Verban‑
des für Wasserwirtschaft und Kulturbau (DVWK), recommend four possible intensity dis‑
tribution patterns for rainfall events, as displayed in Figure 2 [52]. Accordingly, rainfall
events with various durations (15, 20, 25 min), total rainfall depths (25 mm, 30mm, 32mm,
and 35 mm), and patterns (constant, normal, descending, and ascending) were used in the
seepage model. Figure 2a is a 15‑min event with a constant rain intensity and a total rain‑
fall depth of 25 mm. Figure 2b is a 15‑min event with a maximum intensity in the middle
of the event and a total rainfall depth of 32 mm. Figure 2c is a 20‑min event with a maxi‑
mum intensity at the beginning of the event and a total rainfall depth of 30 mm. Figure 2d
is a 25‑min event with a maximum intensity at the end of the event and a total rainfall
depth of 35 mm. For simplicity, these events will be referred to as “15 min‑constant”,
“15 min‑normal”, “20 min‑descending”, and “25 min‑ascending”, respectively. It is noted
that the water ponding was not considered in the seepage analysis since the rain intensity
in all four events was smaller than the saturated hydraulic conductivity (i.e., soil infiltra‑
tion capacity).

The pump was modeled as a sinkhole in the analyses. Thus, an outflux boundary
condition was set to the pump’s boundary. The pump’s outflux is the discharge per unit
area per unit time [m3/m2s or m/s].

−∇(h + z) ·→n = χ
Qp

2πr
on Γ(Pump) for t > 0, (8)

where Qp [m3/s] is the maximum capacity of the pump and r [m] is the radius of the sink‑
hole for the pump. χ [–] takes a value between 0 and 1 depending on the action taken by
the agent to regulate the pump’s flow rate. Five discontinuous actions were defined for
the agent to set the pump’s capacity to 0%, 25%, 50%, 75%, and 100% of the maximum
capacity. Table 2 presents the values of Qp, r, and χ adopted for the five actions.

Table 2. Parameters related to pump’s outflux.

Parameter Qp (m3/s) r (m) χAt=0 χAt=1 χAt=2 χAt=3 χAt=4

Value 0.0002 0.02 0 0.25 0.5 0.75 1
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Figure 3 shows the flowchart of the developed Python code for the seepage model.
The input parameters for this model are unsaturated soil characteristics (a, P0, n), saturated
soil parameters (Ss, Ks), the geometry of the slope and pump, the location of point “P”, rain
intensities for the rainfall event (Ir), and time variables (T, dt). T is the duration of the rain‑
fall event and dt is the time step for solving the PDE (i.e., the governing equation). The
time step was considered 1 min. In the next step, the computational domain of the slope
was defined and ameshwith 3‑node Lagrangian elements was generated. Next, the subdo‑
mains, the initial water level, the initial observations (i.e., initial water head and rain inten‑
sity at t = 0, 1 min), and the auxiliary equations (Se, Sc, Kr) were defined. In order to solve
the PDE, the equation was reformulated as a finite element variational problem. Bound‑
ary conditions were then applied to the subdomains, as demonstrated in Equations (6)–(8).
For each time step, the boundary conditions for the slope’s surface (“BC”, “CD”, and “DE”
in Figure 1) and the pump were updated based on the rain intensity and the action taken
by the agent. Subsequently, the PDE was solved to obtain the water head at point “P”.
The result was used to calculate the reward and update the agent on the next state. The
details about the reward function and conditions for terminating the seepage analysis will
be explained in Section 2.4.

2.3. Agent: Deep Q‑Network
The Deep Q‑Network (DQN) is a widely accepted algorithm for sequential decision‑

making in systems with high‑dimensional states. DQNwas introduced in 2015 by combin‑
ing the Q‑learning algorithm and deep neural networks (DNNs), which showed human‑
level performance in playing Atari games [34]. Recent DQN studies also demonstrated
great success in controlling complex systems in a variety of disciplines. Successful exam‑
ples of DQN applications include real‑time control of stormwater systems [42], carbon
storage reservoir management [43], stock market forecasting [53], managing health care
system [54], control of agricultural irrigation [55], and crop yield prediction for sustainable
agrarian applications [56]. DQN is the ideal option for automated decision‑making in the
geosystem because it has shown excellent performance in systems with high‑dimensional
states.

DQN is a value‑based algorithm. This means that, for the given state, DQN assigns
a state–action value (i.e., Q∗(St, At)), to each possible action as follows [34]:

Q∗(St, At) = Q(St, At) + α[Rt + γmaxQ(St+1, At+1)− Q(St, At)], (9)
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where Rt is the immediate reward in response to the action At taken in the state St, maxQ
(St+1, At+1) is the maximum Q‑value in the next state St+1 after taking the (optimum) ac‑
tion At+1, α is the learning rate of the agent, and γ is the discount factor. The learning
rate is a hyperparameter between 0 and 1 (0 < α ≤ 1), which determines the step size of
the update for Q‑values. The condition α = 0 overlooks the knowledge from new actions
and does not update the Q‑value, while α = 1 considers the most recent information and
ignores the acquired knowledge from the past. The discount factor takes a fixed value be‑
tween 0 and 1 (0 ≤ γ ≤ 1) to adjust the contribution of long‑term rewards from future
states and actions. In fact, γ = 0 merely considers the immediate reward for the action
At and ignores the future outcomes of the chosen actions, while γ = 1 evaluates actions
equally based on their immediate reward and potential future rewards [46].

TheQ‑values are initialized with random values because the agent does not have any
knowledge about the environment. When the agent starts to take action, the Q‑values are
continuously updated using Equation (9) until converging to an optimal policy. As the
state and action space size increase, a neural network helps to approximate the Q‑values,
leading to DQN. Figure 4 demonstrates the architecture of the DQNmodel for the current
study and the interactions between the environment (i.e., the seepagemodel) and the agent
(i.e., the neural network).
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-Update pump’s flow rate based on the action taken by the agent, At

If 
hP(t+1)≥ 0.33 or  hP(t+1)≤-0.13 

or t=T
FalseStop

In
pu

t

True

Figure 3. Flowchart of the developed Python code for the seepage model (i.e., virtual environment).

In the DQNmodel shown in Figure 4, the agent takes an action based on the ε‑greedy
policy. The ε‑greedy policy helps the agent to strike a balance between exploitation and
exploration [57,58]. Exploitation is a strategy in which the agent greedily chooses the most
effective previously discovered action, whereas exploration allows the agent to explore
its environment by taking random actions that may occasionally return even higher re‑
wards [42]. Based on this policy, the agent randomly chooses an actionwith the probability
of ε or takes a known action associated with the maximumQ‑value with the probability of
1 − ε (see Equation (10)). At the beginning of the training, it is common to set ε to a high
value (e.g., 1) to enable the agent to explore the environment for rewarding actions. This
parameter is gradually reduced to a lower value (e.g., 0.01) to transition to an exploitation
strategy as the agent converges to an optimal control policy [42,43].
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Loss =

(Rt + γmaxQ(St+1, At+1))

Target Q‑value

− Q(St, At)

Predicted Q‑value


2

, (10)
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As shown in Figure 4 for the DQN model, two separate neural networks with the
same architecture were trained simultaneously to stabilize the learning process [34]. The
first network is the prediction network used to approximate the Q(St, At). The second
network is the target network used to calculate the target Q‑values (i.e., future rewards),
(Rt + γmaxQ(St+1, At+1)). The input layer of each neural network contains three neurons
to receive observations from the environment. Two fully connected hidden layers were
defined, with 25 neurons for each layer. Then, the output layer with five neurons was
specified for Q‑values of five possible actions. Mnih et al. also introduced the experience
replay (or replay buffer) to improve the learning stability [34]. The experience replay stores
the agent’s most recent experience as a tuple of (St,At,Rt,St+1). During the training, the
agent samples a batch of data from the experience replay and calculates the loss of the
neural network, and then updates the prediction network weights. The loss function is the
squared difference between the target Q‑value and the predicted Q‑value:

Loss =

(Rt + γmaxQ(St+1, At+1))

Target Q‑value

− Q(St, At)

Predicted Q‑value


2

, (11)

It is noted that both prediction and target networks were initialized with the same
weights. Theweights for the prediction networkwere updated every iteration, whereas the
weights for the target networkwere updated everyN iterations (e.g., every 50 iterations) to
stabilize the training. The target network simply duplicates the weights of the prediction
network every N iterations. For this study, after trying various values (15, 45, 60, and 75)
of target network update frequency (or N), the value of 60 was selected.

2.4. Reward Function
The performance of the DRL agent is highly dependent on the received rewards dur‑

ing the training [38]. A thorough and explicit reward function can assist the agent in
rapidly discovering the optimal policy and achieving the goal of the system. However,



Sensors 2022, 22, 8503 9 of 22

outlining such a reward function is not a simple task. In this study, the reward function
was defined in such away as to incentivize the agent to adopt a control policy that keeps the
water level close to the target level. The reward function for the geosystem (Equation (12))
was constructed using the absolute value of the water head at point “P” at the next time
step (i.e., |hP(t + 1)|), and the difference between the water head values at point “P” at the
current and next time steps (i.e., hP(t+ 1)− hP(t)). The positive and negative values of the
water head at point “P” represent the water levels above and below point “P”, respectively.
The absolute value of the water head represents the distance between the current and the
target water level.

Rt =


100 − 90[|hP(t + 1)|/0.01], |hP(t + 1)| ≤ 0.01
1000(|hP(t + 1)− hP(t)|), |hP(t + 1)| ≤ |hP(t)|
1000(hP(t + 1)− hP(t)), hP(t + 1) > hP(t)&At = 4
−10

[
log10(|hP(t + 1)| ∗ 100)

]
, else

, (12)

The cumulative reward for an episode can help to evaluate the selection of actions
for a rainfall event. An episode is a period in which the agent takes action in response to
a rainfall event. An episode may last the same amount of time as a rainfall event. In ad‑
dition to the episode duration, in this study, an episode was terminated when there was
an overflow or complete discharge in the slope. The overflow would happen when the
water height above point “P” exceeds 0.33 m, and the complete discharge would occur
when the water level is more than 0.13 m below the target level. Terminating an episode
due to an overflow and a complete discharge leads to a lower cumulative reward, so the
agent would attempt to avoid these situations by refining the adopted policy. Such set‑
tings can benefit both the geosystem and the pump by enhancing the safety and efficiency
of the system.

The geosystem’s goal was to keep the water level as close as possible to the target
level. It is noted that the geosystem was initially set to the target level. By starting the
precipitation, the water level gradually increased and the agent began taking action. The
agent received apositive score for reducing the distance to the target level (i.e., |hP(t + 1)| ≤
|hP(t)|). The reward function assigned a higher reward to actions that led to lower absolute
values of water head at point “P” (i.e., |hP(t + 1)| ≤ 0.01). The agent also earned a positive
score when the pump utilized its full capacity to remove water from the slope; however, it
could not reduce the distance from the target level. The maximum possible reward value
that the agent could receive for each action was 100, which happenedwhen the water head
at point “P” was exactly zero. By contrast, the agent received a negative score when the
water level moved away from the target level. The maximum negative score assigned to
the agent was approximately −15, which happened when the water level approached the
overflow level.

3. Performance Evaluation
The performance of the proposed DRL in controlling the groundwater was evaluated

by comparing the variation in the water level achieved with the DRL control to the wa‑
ter levels obtained (1) with no control and (2) with a traditional control method called
proportional‑integral‑derivative (PID). The uncontrolled water level represents the condi‑
tionwhennohuman intervention, e.g., pumping in this study, is applied. The uncontrolled
water level in the slope during rainfall events was obtained by performing a transient seep‑
age analysis with the no‑flux boundary for the pump. PID is one of the most widely used
control methods, which is introduced in Section 3.1.

In order to assess the effectiveness of each water control method in preventing slope
failures, coupled transient seepage and slope stability analyses were seamlessly conducted
to obtain the slope’s factor of safety (FS) during various rainfall events. The methodology
for calculating the FS is reviewed in Section 3.2. The evaluationmetric of root mean square
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error (RMSE) also helped to compare the performance of different methods in controlling
the groundwater.

RMSE =

[
1
n

n

∑
i=1

(yi − ŷi)
2

] 1
2

, (13)

where n is the total number of time steps. For each time step, yi is the target value, and ŷi
is the water head at point “P” using different control methods. The RMSE takes a value
within [0,+∞] and has the same unit as the variable of interest (i.e., water level). RMSE
values close to 0 indicate the good performance of the method in controlling the ground‑
water [59].

3.1. PID Controlled Groundwater
PID control is one of themost common control algorithms due to its simple implemen‑

tation and clear functionality [60,61]. This controller mainly calculates the error (i.e., the
difference between the desired output and the actual output) and employs the proportion,
integration, and derivation components of the error in the control function. The output of
the PID control is formulated as follows [61]:

u(t) = kpe(t) + ki

∫
e(t)dt + kd

de(t)
dt

(14)

where is the PID‑controlled variable, kp is the proportional gain, e(t) is the error value, ki
is the integral gain, kd is the derivative gain, dt is the change in time, and de is the change
in the error value. Figure 5 shows the PID control configuration for the geosystem in this
study. In this configuration, q(t) is the control variable, which is the pump’s outflux. q(t)
is a continuous value, so the type of control using PID is continuous. The error value is the
difference between the current water head and the target water head at point “P”. Since
the target water head at point “P” is zero, the hP(t) is the error value in this geosystem.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 24 
 

 

where ( )u t  is the PID-controlled variable, pk  is the proportional gain, ( )e t  is the error 

value, ik  is the integral gain, dk  is the derivative gain, dt  is the change in time, and 
de  is the change in the error value. Figure 5 shows the PID control configuration for the 
geosystem in this study. In this configuration, ( )q t  is the control variable, which is the 
pump’s outflux. ( )q t  is a continuous value, so the type of control using PID is continu-
ous. The error value is the difference between the current water head and the target water 
head at point “P”. Since the target water head at point “P” is zero, the ( )Ph t  is the error 
value in this geosystem. 

 
Figure 5. PID loop control for the geosystem. 

Equation (14) was updated based on the controlled variable and error value in the 
geosystem: 

( ) ( )( ) ( ) ( ) ( 1) ( ) ( 1) /p P i P P d P Pq t k h t k h t h t dt k h t h t dt= + − − + − − , (15) 

where dt  is the time step for the seepage analysis ( 60dt s= ), and ( ) ( 1)P Ph t h t− −  repre-
sents the change in the error value (i.e., the difference between the water head values at 
point “P” at the current and previous time step). The PID parameters as listed in Table 3 
were manually tuned. These parameters were tuned via a trial-and-error process that does 
not require any mathematical model [62]. In this process, the parameters ik  and dk  

were initially set to zero. pk  was then gradually increased until the output, ( )q t , started 

to oscillate. After fixing the pk  value, ik  was gradually increased. It was noticed that 

higher values of ik  caused instability. Subsequently, dk  was increased until an exces-
sive response happened. These listed values of PID control parameters yielded the best 
results for the geosystem control problem investigated in this study. 

Table 3. Tuned PID parameters. 

Parameter pk  ik  dk  

Value 0.0088 0.0001 0.0251 

3.2. Factor of Safety 
Assessment of the slope’s FS during precipitation requires coupling the transient 

seepage analysis and the slope stability analysis seamlessly. The Python code developed 
in our previous study [50] was utilized for the slope stability analysis, which was then 
coupled with the seepage model of the geosystem. The FS was calculated using the Bishop 
Simplified method [63], a limit equilibrium method, which was modified with Vanapalli 
et al.’s [64] model to consider the unsaturated shear strength above the water table [50]. 

Figure 5. PID loop control for the geosystem.

Equation (14) was updated based on the controlled variable and error value in the
geosystem:

q(t) = kphP(t) + ki∑ (hP(t)− hP(t − 1))dt + kd(hP(t)− hP(t − 1))/dt (15)

where dt is the time step for the seepage analysis (dt = 60s), and hP(t)− hP(t − 1) repre‑
sents the change in the error value (i.e., the difference between the water head values at
point “P” at the current and previous time step). The PID parameters as listed in Table 3
were manually tuned. These parameters were tuned via a trial‑and‑error process that does
not require any mathematical model [62]. In this process, the parameters ki and kd were
initially set to zero. kp was then gradually increased until the output, started to oscillate.
After fixing the kp value, ki was gradually increased. It was noticed that higher values of ki
caused instability. Subsequently, kd was increased until an excessive response happened.
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These listed values of PID control parameters yielded the best results for the geosystem
control problem investigated in this study.

Table 3. Tuned PID parameters.

Parameter kp ki kd
Value 0.0088 0.0001 0.0251

3.2. Factor of Safety
Assessment of the slope’s FS during precipitation requires coupling the transient seep‑

age analysis and the slope stability analysis seamlessly. The Python code developed in
our previous study [50] was utilized for the slope stability analysis, which was then cou‑
pled with the seepage model of the geosystem. The FS was calculated using the Bishop
Simplified method [63], a limit equilibrium method, which was modified with Vanapalli
et al.’s [64] model to consider the unsaturated shear strength above the water table [50].

FS =
Nx

∑
j=1

1
mamb

[
c′ +

(
mc − Uaj

)
tan ϕ′ + (Ua − Uw)j tan ϕ′Sej

]
, (16)

where c′ [kN/m2] is the effective cohesion, ϕ′ [◦ ] is the effective internal friction angle, Sej is
the effective saturation at the base of the vertical slice j, and [kN/m2] is the matric suction
at the base of the vertical slice j, in which Ua is the pore air pressure and Uw is the pore
water pressure. ma, mb, and mc are defined as follows.

ma = cos αj +
1

FS
sin αj tan ϕ′, (17)

mb =
Wj sin αj

Bx
−

(
Fwlp

)
j

RBx
, (18)

mc =

(
Wj + Fwj cos β

)
Bx

, (19)

where αj is the angle between the tangent to the base of the vertical slice j and the horizontal
direction, Wj is the total weight of the vertical slice j, Fwj is the hydrostatic force of the
vertical slice j when the vertical slice is submerged, lp is the moment arm of Fw about the
center of the slip surface, R is the radius of circular slip surfaces, β is the angle between the
slope and the horizontal direction, and Bx is the width of the vertical slice j.

In the slope stability analysis, the outflux boundary for the embedded pump was
changed depending on the type of control (i.e., DRL control, PID control, or no control).
Model parameters for the slope stability analysis are presented in Table 4.

Table 4. Model parameters for slope stability analysis.

Definition Soil

Dry unit weight of soil, γdry [kN/m3] 16.40
Saturated unit weight of soil, γsat [kN/m3] 19.54
Friction angle, ϕ′ [◦] 34◦
Cohesion, c′ [kN/m2] 0
Pore air pressure, Ua [kN/m2] 0
Number of vertical slices, Nx [–] 35
Number of cells within the vertical slices, Nc [–] 10

4. Network Training and Results
The proposed model was trained with multiple hyperparameter settings to find the

optimal architecture of the DQN model for groundwater control. This process is called



Sensors 2022, 22, 8503 12 of 22

hyperparameter tuning. The model hyperparameters are parameters that influence the
training process, such as the number of hidden layers for the deep neural network, learning
rate, epsilon, and gamma. After completing the hyperparameter tuning, Table 5 shows the
hyperparameter values that were optimized. The deep neural network was composed of
four layers: one input layer with 3 neurons, two hidden layers with 25 neurons for each
layer, and one output layer with 5 neurons. The input layer received three observations
from the environment and the output layer generatedQ‑values for the five defined actions.
Both the hidden layers and the output layer were fully connected layers (i.e., dense layers).
A ReLU activation function [65] and linear activation function (also called no activation)
were used for the hidden layers and the output layer, respectively. The adaptive Adam
optimizer with a learning rate of 0.001 was adopted for training.

Table 5. Hyperparameters for DQN.

Parameter Value

Number of hidden layers 2
Number of neurons in each hidden layer 25, 25
Number of episodes for training 10,000
Batch size 60
Learning rate, α 10−3
Gamma, γ 0.9
Initial epsilon 1
Final epsilon 0.01
Epsilon decay 0.995
Target network update frequency, N Every 60 iterations
Replay memory size 5000

In order to assess the learning ability of DRL in controlling the groundwater during
various rainfall events, the DQNmodel was trained four times in parallel with four differ‑
ent rainfall events, displayed in Figure 2. It is noted that the training for each rainfall event
was independent. In other words, the model weights from training with a rainfall event
were not transferred to another training process with a different rainfall event. The num‑
ber of episodes for the training for each rainfall event was 10,000. An episode is a series of
states, actions, and rewards that terminates when the rainfall period ends or when an over‑
flow or a complete discharge occurs in the geosystem. During 10,000 episodes of training
for each rainfall event, the agent interacts with the environment in an attempt to discover
the policy that provides the highest cumulative rewards for each episode. Over the train‑
ing period, the agent updates the model weights and improves the adopted groundwater
control policy. After the training for all four rainfall events was complete, the DRL’s per‑
formance in controlling the groundwater table and regulating the pump’s flow rate during
various rainfall events was evaluated.

Figure 6 shows the results for the water head variations at point “P” during four dif‑
ferent rainfall events in the DRL‑controlled, PID‑controlled, and uncontrolled water levels.
DRL’s performance in controlling the water level during each rainfall event was assessed
by comparing it to the PID‑controlled and uncontrolled water levels. During all rainfall
events, the PID and DRL were able to regulate the pump’s flow rate and avoid overflow
and complete discharge in the geosystem. RMSE was calculated for uncontrolled, PID‑
controlled, and DRL‑controlled water levels during each rainfall event to further evaluate
their performance. A comparison of the RMSE values in Table 6 revealed that, although
the DRL control had a narrower action space than the PID control with a continuous action
space, the DRL control was as effective as the PID control in keeping the water level near
the target level during various rainfall events. The RMSE values of the DRL control for
four rainfall events were less than or equal to the value for the PID control. The effective
control of the groundwater indicated that the agent successfully learned the control policy
for managing the water table under different weather conditions.
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Table 6. RMSE values for the uncontrolled, PID‑controlled, and DRL‑controlled water levels during
various rainfall events.

Control
Method RMSE

15 min‑constant 15 min‑normal 20 min‑descending 25 min‑ascending
Uncontrolled 0.093 0.145 0.197 0.115
PID‑controlled 0.022 0.034 0.028 0.022
DRL‑controlled 0.020 0.034 0.025 0.016

Figure 7 demonstrates the selection of actions (i.e., 0%, 25%, 50%, 75%, and 100%of the
pumping capacity) by the DRL agent for regulating the pump’s flow rate. In all four rain‑
fall events with varying patterns, durations, and total rainfall depths, the DRL agent used
a distinct combination of actions to keep thewater table close to the target level. The results
in this figure indicate that the agent has no bias for taking a specific sequence of actions.
Additionally, it was observed that the agent took actions with higher pumping rates (75%
and 100%) when the water level was higher and took actions with lower pumping rates
(0%, 25%) when the water level was lower.

Figure 8 shows the results of the slope stability analysis for the DRL‑controlled, PID‑
controlled, and uncontrolled geosystems during four different rainfall events. For the un‑
controlled geosystem with no pumping, the FS of the slope dropped from the initial value
of 1.53 to a value lower than 1.0, indicating a slope failure during all rainfall events. By con‑
trast, for the DRL‑controlled and PID‑controlled geosystem, the FS of the slope remained
above 1 throughout all rainfall events. It was also observed that the slope’s FS using DRL
control experienced smaller variations than using the PID control. Themaximumdecrease
in the FS using the DRL control was 14.3% less than that using the PID control during
a 15‑min‑normal rainfall event, as shown in Figure 8b. Although the reward function for
DRL was constructed based on the water head value at a single point, the DRL agent suc‑
cessfully regulated the groundwater and reduced the risk of failure in the slope.
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In this study, PID control was used as a benchmark for the proof of concept of the
DRL control. Although PID is one of the most widely used control methods, it may suffer
from a lack of intelligence and resilience due to its passive nature. The complicated field
conditions of real‑world geosystems, such as the stochastic nature of precipitation events,
may require control with high intelligence and resilience, as found in DRL. In extreme
precipitation events, depending on the defined reward function, DRL may start pumping
at earlier stages to reduce the groundwater table and help to prevent landslide hazards in
the geosystem. PID is a reliable control method for systems that are easy to design, with
a known control variable and error value. However, DRL performs based on the good/bad
behavior defined as a reward function. For unknown environments, the implementation
of DRL may be much easier than that of PID.
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5. Discussion
In this section, the influence of some key factors in the use of DRL for generating

intelligent groundwater control systems is investigated. These factors include (1) the state
space size (or the number of observations from the environment), (2) transfer learning (i.e.,
transfer of knowledge from a pre‑trainedmodel to another trainingwith a different rainfall
event), and (3) action space size. Additionally, the limitations of the current study and
directions for future work are discussed.

5.1. Influence of State Space Size
The DRL agent takes action after assessing the state of the environment. Thus, the

state space size (i.e., the number of observations) may affect the performance of the agent.
Due to this concern, we explored the influence of the number of observations on groundwa‑
ter control by the DRL agent. Candidate observations from the geosystem (i.e., indicators
of system status for DRL) include the water head at any point and the rain intensity at any
time. The water head at point “P” must be included in the state space since the reward
function was constructed based on the water head at this point. Other observations from
the environment could be the rain intensity at the current time and future time steps. The
influence of the state space size was investigated using two typical scenarios. One scenario
was the state space with only one observation, termed S1 for simplicity, which included
the water level at point “P”. The second scenario was the state space with three observa‑
tions, S3, which included the water level at point “P”, rain intensity at the current time
step, and rain intensity at the next time step. The rest of the parameters were identical in
both scenarios.

Figure 9 shows the groundwater control in both scenarios (i.e., S1 and S3) during the
four rainfall events. In both scenarios, the results of the water head at point “P” showed no
failure in controlling the groundwater during various rainfall events. However, a compar‑
ison of the RMSE values for S1 and S3 indicated that the performance of the DRL agent in
S1 was slightly better, especially in the 15‑min‑normal and the 20‑min‑descending rainfall
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events, as shown in Figure 9b,c, respectively. In these events, the S1 scenario with a state
space size of 1 resulted in RMSE values (i.e., 0.023 and 0.017) lower than those of the S3
scenario with a state space size of 3 (i.e., 0.034 and 0.025). The reason is that the DRL agent
in S3 took more conservative actions compared to S1. This implies that providing addi‑
tional information about the geosystem and its future status for the DRL agent, such as
the rain intensity at the current time and the next time step in the S3 scenario, can assist in
detecting an impending hazard and responding to it sooner by taking conservative actions
and lowering the water table. The advantages of the S3 scenario with three observations
may not be reflected in the current study, since the goal of this geosystem was to keep the
water level near the target level while avoiding unnecessary pumping to conserve energy.
If the reward function was constructed in such a way as to incentivize the agent to take
more conservative actions for an upcoming intense rainfall event, the agent may lower the
groundwater at earlier stages and better manage the flood hazard.
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5.2. Effectiveness of Transfer Learning
One advantage of adopting RL for geosystem management is that the learning agent

can improve the control policy over time during training (through 10,000 episodes here)
via the received rewards and penalties. Furthermore, transferring the DRL agent’s gained
knowledge from a pre‑trainedmodel to another trainingwith a different rainfall eventmay
further improve groundwater control. In this subsection, the impact of transfer learning
on groundwater control is investigated.

For this purpose, the DRL agent was initially trained with the 15‑min‑constant rain‑
fall event. The DQN agent was then trained with the 15‑min‑normal rainfall event. The
weights of the model were initiated using the weights of the pre‑trained model with the
15‑min‑constant rainfall event. Subsequently, the DQN agent was trained with the 20‑min‑
descending rainfall event and the 25‑min‑ascending rainfall event, respectively. It is noted
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that the model for each training step was initiated with the weights of the previously
trained model. In addition, the state space for all models contained three observations
from the environment.

To demonstrate the influence of transfer learning, the DRL agent was trained in two
ways: without initializing the weights from a pre‑trained model (termed S3 for simplicity)
and with weights initialized using the previously trained model (termed S3TL). Figure 10
shows groundwater control outcomes for S3 and S3TL during the four types of rainfall
events. Figure 10a only includes the result of S3, because the first training step with the
15‑min‑constant rainfall event had no previously trainedmodel. As shown in Figure 10b–d
for the three rainfall events, the RMSE values for training using transfer learning (S3TL)
were lower than the values for training without any knowledge (S3). Lower values of
RMSE indicated that the training with transfer learning can better regulate the ground‑
water and keep the water level closer to the target level. Furthermore, by comparing
Figure 10a–d, it was observed that the distance from the target level was reduced as the
agent gainedmore experience in controlling thewater table during different rainfall events.
This investigation confirmed the efficiency of the transferred knowledge in improving the
groundwater control as the agent trains with more rainfall events.

5.3. Influence of Action Space Size
The number of actions that can be taken by the agent during various rainfall events

may impact groundwater control in the geosystem. As a result, the effect of the action space
size on groundwater control is investigated in this subsection. For this purpose, two types
of control, binary control with a state space size of two (on and off) and intermittent control
with a state space size of five (0%, 25%, 50%, 75%, 100%), are studied.

Figure 11 displays the results of the water head at point “P” using the binary con‑
trol and intermittent control in the geosystem during various rainfall events. As shown in
Figure 11a,c,d, the RMSE values using the intermittent control are lower than the values
using the binary control, except for the 15‑min‑normal rainfall event shown in Figure 11b.
The reason is that this 15‑min‑normal rainfall event (see Figure 2b) has higher rain inten‑
sities compared to the other events (see Figure 2a,c,d). In this case, the DRL agent must
regulate the pump with full capacity to control the water table. Figure 12 demonstrates
the actions taken by the agent using the binary and intermittent control during different
rainfall events. As shown in Figure 12b, the choice of actions for the intermittent control
during the 15‑min‑normal rainfall event demonstrated that the DRL agent mostly selected
two actions (0% and 100%), similar to the binary control. By contrast, it can be observed
fromFigure 12a,c,d that, for the intermittent control, the agent employed actions associated
with lower flow rates during lower rain intensities. This selection of actions led to a water
level close to the target level, as shown in Figure 11a,c,d. In comparison to binary control,
intermittent DRL control of groundwater can enable a more efficient pumping system by
operating at lower flow rates when the distance from the target level is small, and thus can
better reduce the pumping energy cost in long‑term operations.

5.4. Limitations and Future Work
Here, the limitations and applications of the current study for future work are dis‑

cussed. One of the main limitations of implementing DRL is its considerable computa‑
tional demand for training the agent. Depending on the length of the rainfall events, train‑
ing for 10,000 episodes in this study took approximately 100–130 h of real‑world time.
In addition, defining a complex and precise reward function may not be always easy for
more complicated tasks. Looking at the future directions of this study, the agent will be
trained with more complex field conditions and rainfall patterns. Accordingly, the knowl‑
edge gained in this study will be transferred to a physical lab‑scale geosystem that will
serve as a real‑world environment for the DRL agent.
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6. Conclusions
This study aimed to take a small but significant step towarddeveloping an autonomous

geosystem and minimizing the operational costs of groundwater control. This paper stud‑
ied an intelligent geosystem enabled by deep reinforcement learning (DRL) for controlling
the groundwater in slopes subjected to precipitation. The main contributions of this study
are (1)modifying the developedDRL framework for the intelligent control of groundwater
in a typical geosystem (i.e., a slope equippedwith a pump and subjected to rainfall events),
(2) evaluating the DRL control of the water level against the traditional proportional‑int‑
egral‑derivative (PID)‑controlled and uncontrolled water levels, (3) assessing the perfor‑
mance of DRL control in preventing slope failures, (4) investigating the effectiveness of
transferring the DRL agent’s knowledge from a pre‑trained model to a new training task
with a different rainfall event, (5) exploring the influence of the number of observations
from the environment, and (6) investigating the impact of binary control versus intermit‑
tent control on the groundwater management. The results showed that the DRL agent
learned how to control a pump to lower the water table and mitigate the landslide hazard
in the slope. Despite the diverse rainfall patterns, durations, and total rainfall depths, the
DRL agent could successfully learn themost effective control policy to keep thewater level
near the target level and prevent slope failures. Furthermore, the DRL agent improves the
groundwater control policy as it is trained with more rainfall events. The findings of this
study point out a feasible avenue for developing intelligent geosystems.
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